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Recently the concept of a nonfeedback control has been developed, based on having an accurate mod-
el of the unperturbed system from which an appropriate driving force can be calculated. In this work
the application of the nonlinear resonant stimulation concept of Reiser, Hiibler, and Liischer [Z. Natur-
forsch. Teil A 42, 803 (1987)] and the nonfeedback control method of Hiibler and Liischer [Naturwissen-
schaften 76, 67 (1989)] is experimentally investigated. The experimental system that is considered is the
periodic wake behind a circular cylinder at low Reynolds numbers. It will be shown that successful con-
trol, i.e., an increase or decrease of the width of the wake region, can be achieved by using an external
sound excitation. Both experimental results and numerical simulations based on a low-dimensional
model reconstructed from experimental data are in a good quantitative agreement. In addition we dis-
cuss the physical properties of a stimulated wake flow and the general problems of the experimental ap-
plication of the control to such flows. Furthermore, an experimental setup is proposed from which a
higher efficiency for the wake control and the possibility to achieve all kinds of preselected dynamics,
such as a total suppression of the wake flow, can be expected. The advantages of this type of model-
based control, its physical interpretation, and its applicability to technical flows will be discussed in de-
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I. INTRODUCTION

In recent years different concepts have been developed
to direct nonlinear or chaotic dynamical systems to a
preselected or goal dynamics [1,2]. While extensive
literature exists on the subject of linear control with and
without feedback [3-5], little is known about its non-
linear counterpart [6]. In this paper we present a sys-
tematic experimental study of a nonlinear resonant
stimulation, and the possibility of applying a nonlinear
nonfeedback control to the periodic wake behind a circu-
lar cylinder.

The ability to stimulate or control the dynamics of a
considered system to effect a desired change is a very im-
portant task, both in basic research as well as in applied
engineering. Since a large variety of interesting dynami-
cal systems are characterized by their nonlinearity, the
most efficient control of such systems might be achieved
by using sufficient nonlinear driving forces [1]. The fun-
damental methods of driving a nonlinear dynamical sys-
tem in a prescribed way are the H method, developed by
Hiibler and Liischer [1], and the OGY method developed
by Ott, Grebogi, and Yorke [2]. The H method is based
on a nonfeedback control mechanism, and has been ap-
plied numerically to well-known oscillators [7,8], to fully
developed and transitional solutions of the Ginzburg-
Landau equation as models for shear flows [9] and the
cylinder wake [10], and experimentally to a damped
mechanical oscillator [11] and to fluid mechanical sys-
tems such as jets and wake flows [12,13]. The OGY
method is based on a feedback mechanism. Different
types of modified OGY methods are applied to control a
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chaotic oscillating metal beam in a magnetic field [14], to
stabilize a laser beam [15] or high periodic orbits of a
diode resonator [16], to control cardiac chaos [17], and to
control a driven pendulum and a driven bronze ribbon
[18]. Since most dynamical systems in the real world are
nonlinear, there are a large number of further applica-
tions for these control mechanisms. In this work, the H
method is applied, because with this method a large
variety of different goal dynamics can be chosen.

In general the nonfeedback control of nonlinear sys-
tems which exhibit complicated dynamics shows serious
problems. In many complex systems the significant con-
trol parameters do not vary at a rate slow compared to
the governing order parameters. Furthermore, experi-
mental systems are more or less influenced by distur-
bances from the surroundings, e.g., pressure, temperature
or humidity in the laboratory, which may change slightly
during the experiments. Since the nonfeedback control
theory relies on forecasting techniques which are based
on a low-dimensional model (LDM) for the dynamics of
the experimental systems, the derivation of such LDM’s
is very important. Unfortunately very often low-
dimensional models cannot be derived from first princi-
ples. Therefore the analysis of systems that exhibit com-
plex dynamics in the form of a low-dimensional attractor
begins with a state space reconstruction of the dynamics
[19]. Methods have been developed to construct models
from this representation, which reproduce the dynamics
on a low-dimensional attractor [20-26], i.e., if the trajec-
tories have no double points in state space, an auto-
nomous system of ordinary differential equations of the
form
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. dX

X ar [f(X) (1)
can be derived. Here X characterizes continuous vari-
ables (x,,...,x,) of the system, f is a matrix describing
the generally nonlinear coupling among the variables,
and ¢ defines the time. Although not obtained from first
principles, such a model can be used for dynamical sys-
tem analysis [27], forecasting, and noise reduction [28], to
resonantly stimulate a nonlinear system [7,29,30], or to
direct a system to a preselected dynamics [1,2]. It is the
nonlinear resonant stimulation and the control to a
preselected dynamics we propose to investigate here. In
general, both control procedures discussed in this paper
are very simple. First, construct a LDM or improve the

LDM after an unexpected change in the experimental

system; and, second, implement the control by an ap-
propriate driving force. This force results from a com-
parison of the LDM to the equation of motion of the goal
dynamics. As long as the control parameters of the ex-
perimental system change slowly compared to the typical
time scale of the experimental dynamics, the time be-
tween two succeeding improvements of the LDM may be
long, and the control is basically an open-loop control
[24].

A challenging question in fluid mechanics is still the
active control of wake flows behind bluff bodies (see Ref.
[31]). In the following we will investigate the possibility
of resonant stimulation and nonfeedback control of such
a wake to a preselected dynamics or goal dynamics. The
experimental system considered here is the wake behind a
circular cylinder in the periodic regime
(50<Re=U_d/v<160; U, is the flow speed, d is the
cylinder diameter, and v is the kinematic viscosity).
Since the basic equation of motion to describe the dynam-
ical behavior of the vortex street are the Navier-Stokes
equations, an accurate low-dimensional model must be
derived. It has been shown elsewhere [32,33] that a
LDM for the regular dynamics of the cylinder wake can
be extracted from measured time signals. This model was
a two-dimensional third order differential equation of the
type

i= 3  ayuti’l, )
i=0,...,3
j=0,...,3—

1

where u denotes the instantaneous velocity component in
the mean flow direction, # and i are its first and second
time derivatives, and a;; are the coefficients of a Taylor
series expansion. From this model the response to
sinusoidal and nonlinear driving forces can be predicted,
and the nonlinear control mechanism therefore possibly
be applied with success [10,13].

In this paper we will investigate the extent to which
the nonlinear resonant control mechanism [29,30] and
the nonlinear nonfeedback control can be applied to the
periodic cylinder wake. After the experimental setup is
described, the basic principles of the nonlinear resonance
stimulation of a dynamical system and the application to
the vortex street is presented in Sec. III. Then in Sec. IV
the nonfeedback control method is introduced, and the

results from the experimental investigation are discussed.
The problems concerning the transfer of the calculated
driving forces by an external sound excitation are dis-
cussed in Secs. V and VI. Furthermore, the idea of an ex-
perimental arrangement for the control of the cylinder
wake which might increase the efficiency of the wake
control is proposed. Finally, in Sec. VI the physical in-
sight and an outlook of the applicability of the nonlinear
model-based control to technical flows at higher Rey-
nolds numbers are presented.

II. EXPERIMENTAL SETUP

The measurements were carried in an open-circuit-type
wind tunnel shown in Fig. 1. The wind tunnel is driven
by a Thyristor-controlled direct current engine which is
able to create velocities up to 28 m/s. The nozzle was
especially designed to achieve laminar homogeneous flow
in the core of the jet for low free stream velocities, in par-
ticular less than 3 m/s [34]. To achieve a low turbulence
level at about 0.1%, a honeycomb, a special designed
cone, and three riddles of different wire meshes have been
used.

A circular stainless-steel cylinder with a diameter
d =1.5 mm had a polished surface, and was mounted
horizontally directly at the nozzle exit of 180-mm diame-
ter. The cylinder and wind tunnel were separated to
avoid any coupling. Furthermore, the cylinder was under
mechanical tension to prevent vibrations, which might
disturb the separation of the wake flow. A hot-wire
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FIG. 1. Top: Schematic presentation of the wind tunnel; (1)
honeycomb, (2) special designed cone to stabilize the flow, (3)
PVC connecting piece, (4) three riddles of different wire meshes,
and (5) nozzle. Bottom: test section. HW: hot-wire probe. L:
loudspeakers. U,: mean stream velocity. d: cylinder diame-
ter.
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probe was placed halfway between the suspension points
of the cylinder in the wake at downstream locations
§=3d and =d to one side to measure the velocity fluc-
tuation. The origin of the coordinate system (&,7n) coin-
cides with the axis of the cylinder. The velocity signal
was amplified, digitized by a 12-bit 4 /D converter, and
sampled at 10 kHz. Two loudspeakers working 180° out
of phase were placed outside the flow directly above and
below the cylinder to superimpose sound.

III. NONLINEAR RESONANT STIMULATION

Resonant stimulation of oscillatory systems is a well-
known process in engineering and applied physics. In
this context the notion of resonance is defined by the
largest response of a driven damped linear oscillator. A
measure of the response of such a stimulated oscillator
can be defined by the energy transfer

AE=[" : 3

du
F(t) dt

where F(t) is the time-dependent driving force, and T
defines the time interval of the stimulation. In this case
of a linear oscillator at resonance, the driving frequency
of an external sinusoidal forces matches the natural fre-
quency of the oscillator, yielding the largest energy
transfer [30]. In the case of nonlinear oscillators, which
are characterized by an amplitude-frequency coupling,
resonant forcing is much more complicated. In general
the eigenfrequencies of such systems are not defined,
since their values depend on the amplitude. Recently it
has been conjectured that a large energy transfer AE to
nonlinear dynamical systems can be achieved by a special
class of aperiodic driving forces [7,30]. It was shown
elsewhere that an optimal control of nonlinear quantum
systems verifies this observation [35].

In this section the idea of nonlinear resonant stimula-
tion will be applied experimentally. In general the op-
timal resonant driving forces needed can be calculated by
the following two methods.

In method I, the control signal F(t) is calculated by

F(t):(wm—aol)ll(; , (4’)

where the term wg, % belongs to a model defined by the
preselected or goal dynamics of the type
ig= 3
i=0,...,3
Ji=0,...,3—i

w;uGlg - (5)

The variable u; denotes the preselected instantaneous ve-
locity component in the mean flow direction, #¢ and iig
are its first and second time derivatives and w;; are the
preselected model coefficients. The expression of the con-
trol signal [Eq. (4)] represents the generalized definition
of the notion of resonance in case of the resonant stimula-
tion [7].

In method II, the control signal F(?) is calculated from
the time-reflected transient dynamics of the considered
oscillator. From a mathematical point of view, this
behavior corresponds to a change of the sign of the model

equation terms u '/ with j#0, i.e.,

Fio=— 3  wjugul for j#0. 6
jl=0,0.’....,'3'3—i
This forcing function reveals that nonlinear oscillators
react most sensitively to their own transient dynamics
[30]. More details about methods I and II can be taken
from Refs. [7,30].

In the following, both methods will be applied to the
periodic vortex streets behind a circular cylinder.
Method I will be used for an increase of the velocity am-
plitude u (¢), i.e., an increase of the width of the wake re-
gion, whereas method II will be used for a decrease. The
opposite application of these methods lead to similar re-
sults [10].

Nonlinear resonant stimulation of the vortex street

1. Increase of the width of the wake region

First the vortex streets is stimulated resonantly by the
use of method I [Eq. (4)]. The aim is to increase the ve-
locity amplitude u (¢) of the cylinder wake. Therefore the
resonant control signal is calculated from

F(ty=olaylug , o)
where
o= |—2—1 sgn(ag,) (8)
ao1

is the control parameter. By the use of such a control pa-
rameter o, the energy transfer is given by

>0 foro>0
dt{=0 for =0 9)

AE=f0T
<0 for o<0.

du
F(t) ar

A systematic investigation of the cylinder wake is carried
out at Re=67. Figure 2 shows the resonant stimulation
of the vortex street (top), the numerical prediction from
the extracted low-dimensional model [Eq. (2)] (middle),
and the applied control signal calculated from Eq. (7)
(bottom). The control parameter chosen was o =0.007.
In both presentations, i.e., the experimental and the mod-
el system, an increase in amplitude can be obtained. A
distinctive feature of both driven systems is the asym-
metry between the numerical and experimental time sig-
nals. The mean value of the experimental time signal is
shifted to a lower mean velocity, whereas the numerical is
shifted to a higher velocity. This deviation is based on a
physical process of the wake flow, which is not con-
sidered in the numerical simulation. An increase in am-
plitude of the velocity fluctuation corresponds to an in-
crease of the separated vortices and therefore the width
of the wake region.

The global structure of such a wake flow is illustrated
in Fig. 3, where a schematic representation of the mean
velocity profile behind the cylinder for the natural and
driven wake flows is presented. It can be seen that due to
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FIG. 2. Experimental (top) and simulated time signal from
Eq. (2) (middle) of a resonantly stimulated vortex street at Re
= 67. The goal was an increase in the velocity amplitude u (¢),
i.e., an increase of the width of the wake region. The control
signal F(z) (bottom) was calculated from Eq. (7), where
o =0.007.

=
=}

FIG. 3. Schematic presentation of the mean velocity profile
of the wake region behind the cylinder. Top: natural state, bot-
tom: stimulated state of a cylinder wake.
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FIG. 4. Mean velocity profile vs the normalized probe posi-
tion 717/d for the natural (O) and the resonant stimulated vortex
street (O) for the same experimental resonantly driven state
shown in Fig. 2. The probe position behind the cylinder is
&/d =3.

an increase in amplitude, the fixed probe position at a lo-
cal point in space (&,7) moves relative to the vortices at
the center of the wake, which causes a variation in mean
velocity. This process is quantitatively verified in Fig. 4,
where the mean velocities of natural and driven wake
flows are measured for different 7 locations of the probe.
In addition to a continuous change in mean velocity, the
velocity amplitude is also dependent on the position (&,7)
of observation. This statement is confirmed in Fig. §,
where it is shown that the increase of the velocity ampli-
tude A.(n)=21|max(u (t,m))—min(u(¢,1))| depends on
the 1 coordinate normalized with the natural amplitude
A, (n)=1|max(u,. (t,m))—min(u,(t,7))|, ie.,

A ()
A,c(n)
1max(u,(¢,))=min(u,(1,7))]

= . 1
1lmax(u,,(t,m))—min(u,.(t,1))| (10)

A*(n)=

Note that for the control experiments the fixed probe po-
sition was always £/d =3 and 1/d =1, i.e., an increase
of the width of the wake region causes an increase in
mean velocity and velocity amplitude.

In the last numerical experiment (Fig. 2) a sudden
jump from the natural to the goal amplitude was investi-
gated. The response of the vortex street to a continuous
variation of the control parameter is shown in Fig. 6.
The time-dependent control parameter o(t) is calculated
from

-2 -1 0 1 n/d 2

FIG. 5. Increase of the normalized amplitude 4 * vs the nor-
malized probe position 7/d for the same experimental resonant
driving shown in Fig. 2. The probe position behind the cylinder
is £/d =3.0.
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FIG. 6. Experimental (top) and simulated time signal from
Eq. (2) (middle) of a resonantly stimulated vortex street at Re
= 67. The control signal F(¢) (bottom) was calculated from Eq.
(7), but here a time dependent control parameter o(¢) was used

[Eq. (11)]. o(t)=max(A0,0g,), Ac=0.002(At/s), and
Ogng=0.001.
0 for ¢t <tp,
o(t)= max(Ac,0g,y) for tp, <t <tp , an
where

t_—tFA
A =0.002—" and 0g,y=0.01,

and tp, and tgzp define the time interval of the control.
Taking the physical behavior of the stimulated vortex
street introduced into account, a good agreement be-
tween the experimental system (Fig. 6, top) and the nu-
merical simulation (middle) from the constructed model
can be found. These results have also been obtained in
flow visualization using the smoke-wire technique.

2. Decrease of the width of the wake region

Now we want to decrease the velocity amplitude of the
vortex street, i.e., the width of the wake region by using
method II. In this case, the control signal results from a
reflection in time of the transient dynamics of the vortex
street. A generalization of this type of control signal [Eq.
(6)] by the introduction of a control parameter a then
yields the relation

F(h=(a—1) 3
i=0,...,3
j=0,...,3—i

wyugud . (12)

Figure 7 shows the numerical simulation of a vortex
street stimulated with such force, and the applied control

FIG. 7. Simulated time signal of a resonantly stimulated vor-
tex street at Re = 67 (top) and the respective control signal F(¢)
(bottom). Here the goal was defined by a decrease of the veloci-
ty amplitude u (¢).

signal calculated from Eq. (12) for a= —1. The phases of
F(t) and u (¢) at the starting point of the control ¢, are
nearly similar, i.e., Ap=0. Because of these initial condi-
tions, the system immediately locks into the goal dynam-
ics. Therefore the frequency and the amplitude are en-
trained to lower values and, due to the amplitude-
frequency coupling, a continuous decrease in amplitude
can be obtained. When the control signal becomes too
small, the oscillator unlocks from the driving force and
converges back to its natural amplitude. However, the

0.80; . . 4 0.80 T T

u(t) AR

0.60 [

0.50

u(t) I ‘ ]

.50 M i

0.50
0.7
RS
0.6
0.5
0.0

FIG. 8. Same as Fig. 7, but here a comparison of experimen-
tal time signal and numerical simulation from Eq. (2) for various
phase differences A is shown. Experimental time signal (top)
and numerical simulation (bottom).
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control signal converges to zero and therefore only a de-
crease for a finite time is achieved. This result is also ob-
tained for the experimental system. In the experiments
the initial phase difference Ag at ¢t =, between the oscil-
lator u(z.) and the control signal F(¢,), where ¢, is the
starting point of the driving, cannot easily be determined.
Due to the short time influence of the control signal, a
number of different Ag-dependent responses of the vortex
street are possible. This statement is illustrated in Fig. 8,
where for four different initial phase differences the ex-
perimental results for the vortex street at Re=67 and the
corresponding numerical simulations from Eq. (2) are

F  (t) fort >t

F(t)={F,(t —nt ) for ty+nt,y <t<ty+(n—+1), withn=0,2,4,...

presented. The control signal was calculated from Eq.
(12), where a= —1. It is found that experimental results
and numerical simulation are quantitatively in very good
agreement. These results indicate that it might be possi-
ble to achieve a long time reduction of the velocity ampli-
tude by the use of a modified control signal.

Because we do not want to lose the dynamical informa-
tion of physical properties about the system like the
amplitude-frequency coupling [Eq. (6)], a control func-
tion of the following type is constructed: if F  (¢) is the
initial control signal calculated from Eq. (12), then the
modified driving signal reads

F [2ty+(n+1)t, —t] for ty+nt,y <t<ty+(n+1)t, withn=13,5,....

The length of the starting interval, ¢, and the length of
the remaining part intervals, ¢ 4;, can be chosen under
the conditions that F  (t,+nt,;) with n €N possesses
local maxima. In practice this was achieved in such a
way that the computer program which calculates the
control signal F(t¢) automatically fits the preselected
values for t,; to the next maximum. In Fig. 9 such a
control signal calculated from Egs. (12) and (13) is
presented. The numerical simulation of the application
of such a driving force to the vortex street at Re=67 is
shown in Fig. 10. The control signal is similar to Fig. 9,
but here the control is switched on at z;,=1.5 s and
switched off at tz; =10.5. The application of this force
contains some interesting results in the dynamical
behavior. First, at the beginning of the control the ob-
served dynamical behavior is similar to Fig. 8, i.e., due to
the amplitude-frequency coupling, a decrease of the am-
plitude for a finite time is found. Second, due to the
modulation of the control signal, a complex response of
the stimulated system can be obtained. Finally, these
complex dynamics decay periodically in time and at
about ¢t =7.0 s the goal dynamics is achieved. After the
control at t =10.5 s is switched off, the system converges
back to its natural dynamical state. The corresponding
experimental time signal is plotted in Fig. 11. A very
good quantitative agreement between the experimental

2000 T T T T T T

F(t)

—-1000

72000 1 1 1 1 1 1
0.0 05 1.0 1.5 2.0 25 3.5
t [s]

FIG. 9. Modified control signal F(¢) calculated from Egs.
(12) and (13), which will be used for a longtime decrease of the
velocity amplitude u (2).

[

response and the numerical predictions (Fig. 10) is found.
The decrease in amplitude and the corresponding reduc-
tion of the wake region have also been observed in the
flow visualization. The maximal reduction of the ampli-
tude found in both the experiments and the numerical
simulation is at about 15% of the natural undisturbed
amplitude. In general this maximal decrease in ampli-
tude depends on the physical properties of the investigat-

0.80 T T T

1
1.00 4.00

0.70

0.60 SUY

0.50
4.00

0.80

1
7.00 8.00

0.70

1

t [s]

9.00 10.00 12.00
FIG. 10. Numerical simulation of a resonant stimulated vor-
tex at Re = 67, where the force of Fig. 9 is applied. tr,=1.5s

and tpz =10.5s.
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FIG. 11. Same as Fig. 10, but here the corresponding experi-
mental time signal of a resonant stimulated vortex at Re = 67
using the force from Fig. 10 is presented. Here t;,=1.25 s and

lpg = 10.65 s.

ed oscillator.

The experimental and numerical results for the non-
linear resonant stimulation presented so far show a good
quantitative agreement. Therefore one can expect a simi-
lar agreement for the nonfeedback control to a preselect-
ed or goal dynamics. The advantage of the nonfeedback
control mechanism is the choice of a large number of pos-
sible goal dynamics such as stationary, periodic, or other
dynamical states [7,10].

IV. NONFEEDBACK CONTROL

The basic principle of the no-feedback control mecha-
nism developed by Hiibler and Liischer [1] is based on
the following idea: Assume that an experimental system
can be described by a differential equation of the type

¥(t)=E(X,t)+F(1), (14)

where F(t) defines the driving force. If an exact equation
is unknown or cannot be solved, a low-dimensional model

J()=M(¥,t) (15)

must be determined, which describes accurately the dy-
namics of the experiment. In addition, a desired behavior
of the systems is specified by the preselect dynamics

Z()=G(z,1) . ~ (16)
Then the appropriate driving force
F(1)=G(Z,1)—M(Z,1) (17

can be calculated. For X(¢)=Z(¢) and M(¥,1)=E(X,t)
the experimental system immediately locks into the goal
dynamics Z(¢), and the control is accomplished. The
most crucial point of this method is that if Eq. (14) is un-
known or cannot be solved, then a model of the system
dynamics [Eq. (15)] is needed. Such a model can be con-
structed, for example, from measured time signals
[19-26]. With the nonfeedback control mechanism of
Hiibler and Liischer [1] it is possible to select a large
variety of different prescribed dynamics such as station-
ary solution (fixed point dynamics), periodic solutions,
etc. In the case of the vortex street, this statement means
that, from a mathematical point of view, a total suppres-
sion, i.e., the stabilization of the unstable stationary solu-
tion, might be possible.

No-feedback control of the vortex street

To control the vortex street without feedback to a
preselected dynamics, a driving force of the type

F()=Giig,t)—M(ig,1) , (18)

where M (ﬁG,t)zE (#g,t), must be calculated. Here
M (i) represents the approximate model equation for
the dynamics of the vortex street, and G(#g,?) is the goal
dynamics. Since the model is of the type of Eq. (2), the
general form of the driving force can be written as

Fin= 3 ubal . (19)
i=0,..,3
j=0,...,3—i

(w;;—ay

In general, it is sufficient to vary just a subset of the
coefficients w;;. If only one coefficient is varied, Eq. (19)
is simplified to

F(0)=(w;—a;)uguf . (20)
Now to simplify further discussions, a control parameter
w
B,=|——1 21)
10

is introduced. It was shown elsewhere that in the case of
the constructed low-dimensional model for the vortex
street dynamics the w;uG* terms are suitable for the cal-
culation of the control signal [10]. For our investigation
the coefficient w,, was calculated with

ww:aw+[3malo . (22)

Then the energy transfer AE to the controlled system is
given by

>0 for Bp<0

=0 for B,,=0 (23)
<0 for Bu>0.

AE=
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1. Increase of the width of the wake region

In this section the goal dynamics is defined by an in-
crease of the velocity amplitude, i.e., an increase of the
width of the wake region. Therefore a negative control
parameter was chosen [Eq. (23)]. Figure 12 shows the nu-
merical simulation of the control of the vortex street at
Re=67 and the applied control signal calculated from
Eq. (20), where B,,=—0.005. When the control is
switched on at t =0.8 s, the system is entrained, and its
phase locks into the phase of the control signal after
some oscillations. The state of the goal dynamics is
reached at about  =1.1 s. When the control is switched
off at t =1.6 s the system immediately converges back to
its natural amplitude. The interesting fact of this simula-
tion is that the mean value of the amplitude of the time
signal is shifted to a higher value. This is due to the con-
trol signal, where the forcing function fluctuates around a
nonzero value of U(#)=3200. The mean value of U(z)
depends strongly on the dynamical state of the vortex
street (i.e., on the Reynolds number) and on the preselect-
ed dynamics. The problem for an experimental applica-
tion is that such a force cannot be produced by the simple
loudspeaker arrangement.

To investigate the applicability of the nonfeedback
control theory with this experimental arrangement, the
goal dynamics and the corresponding driving force have
to be modified. Such a modification is done in two steps.
In the first step, the forcing function F(¢) is shifted from
the nonzero mean value of Fig. 12 to F(¢#)=0. The re-
sulting force and its application to the model equation
[Eq. (2)] discussed in Fig. 12 are presented in Fig. 13.
The time signal of the simulated vortex street now shows
a nonlinear modulation, which indicates that the ampli-
tude of the modified force is too small and therefore does
not match the physical properties of the vortex street
governed by the chosen goal dynamics. In the second
step, the modified forcing function is multiplied by a fac-
tor of 3.5. Then the nonlinear modulation disappears and
the goal dynamics is accomplished. This process is illus-
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FIG. 12. Numerical simulation of an increase in amplitude of
the vortex street at Re=100 (top) and the applied control signal
F(t) (bottom). The control signal was calculated from Eq. (20),
where BIOZ —0.005.
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FIG. 13. Same as Fig. 12, but here the applied control signal
F(t) 1is shifted around the mean value of zero by
F(t)=F(t)—F1).

trated in Fig. 14, where the same model equation [Eq.
(2)] as the one in Figs. 12 and 13 is stimulated by the driv-
ing force shown below. The corresponding experimental
time signal using the same force is presented in Fig. 15.
Taking the physical phenomena for the variation of the
width of wake region into account, both experimental
response and numerical simulation from Eq. (2) are quan-
titatively in a good agreement. The problem concerning
the scaling of the control signal will be discussed below in
a special subsection. Here we will only focus on the gen-
eral applicability of the control mechanism.

2. Decrease of the width of the wake region

In technical and engineering applications, one goal of
the wake flow control is a total suppression of the vortex
street. For technical reasons this goal dynamics is of
great importance since the drag of a body in a fluid
strongly depends on such wake phenomena. In the fol-
lowing, the possibility of achieving a decrease in ampli-
tude or a suppression of the vortex street is discussed. To
achieve a decrease or a total suppression of the vortex

0.9

u(t)

0.7

—2500+ .

—5000 . . L
0.0 0.5 1.0 ' [3} 2.0

FIG. 14. Same as Fig. 13, but here the applied control signal
was multiplied by a factor of 3.5.
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FIG. 15. Experimental time signal of a controlled vortex
street at Re=100. This experimental result corresponds to the
numerical simulation of Fig. 14.

street, the control parameter 3;; must be positive [Eq.
(23)1.

The top of Fig. 16 shows the numerical time signal of a
vortex street at Re=100, stimulated by the control signal
calculated from Eq. (20). The goal dynamics here is
defined by a total suppression of the velocity fluctuations,
for which a control parameter 3,,=0.06 was chosen.
The control started at £ =0.5 s. It was found that the
simulated dynamics of the vortex street locks into the
phase of the control signal and is entrained to the select-
ed stationary dynamics. The forcing function applied
here possesses two important features. First, the values
of F(t) are always negative, and second, F(¢) converges
to a constant nonzero value in a finite time interval de-
pending on the amplitude-frequency coupling. If such a
force is considered to drive the vortex street in the experi-
ment, it is obvious that such a forcing function cannot be
produced by the loudspeaker arrangement. Therefore the
control fails, even when only a decrease in amplitude is
defined by the goal dynamics. Similar to the procedure
discussed for an increase in amplitude the calculated
force must also be modified.

Figure 17 shows a numerical simulation of a driven
vortex street at Re=100, where the goal dynamics is
defined by a decrease of the width of the wake region.
The driving force shown below is calculated from Eq.

1.0
0.8
0.6
0. }
) ‘ _
F(t) | i
—-50000| b _
~75000 = '
0.0

FIG. 16. Numerical simulation of the suppression of a vortex
street at Re=100 (top), and the control signal F(¢) (bottom).
The driving force was calculated from Eq. (20), where
B10=0.06.
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FIG. 17. Numerical simulation of a controlled vortex at Re
= 100. The goal dynamics is defined by a decrease of the am-
plitude u(¢). The driving force is calculated from Eq. (20),
where 8,,=0.02.

(20), where B,,=0.02. It can be seen in the numerical
simulation that, due to the appropriate driving force, the
goal dynamics is accomplished. Since this control signal
cannot be transferred by the loudspeaker arrangement,
F(t) was modified in a similar way to one calculated for
an increase of the width of the wake region. With the ap-
plication of such a driving force, the experimental time
signal (top) and the corresponding numerical simulation
(middle) presented in Fig. 18 are found. The modified
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.0 0.5 1.0 ]Lﬁ

t [s

FIG. 18. Experimental (top) and numerical time signal (mid-
dle) of a controlled vortex at Re=100 using the modified con-
trol force shown below. The driving force is calculated from
Eq. (20), where f3,,=0.02.
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force is shown at the bottom of Fig. 18. Using this type
of modified driving force, large deviations of both the ex-
perimental and model systems from the goal dynamics
can be obtained. This result indicates that another exper-
imental ariangement must be developed which can
translate without any modifications (i.e., scaling), the cal-
culated driving forces to the separated vortex street,
thereby achieving the preselected dynamics.

V. IMPROVEMENTS OF THE WAKE CONTROL

A. Physical properties of the control functions

In general the external sound excitation is a simple but
effective experimental method to stimulate or stabilize
the wake flow behind bluff bodies [36,37]. Unfortunately,
this experimental control apparatus possesses some phys-
ical problems for the nonfeedback control mechanism,
because in some cases the exact transfer of the calculated
control functions is not possible. In addition, the
influence of the sound signal on the development of the
vortices in the near wake behind the cylinder is not well
known. In the following we discuss in detail the physical
properties of the wake control, especially the connection
between the main (incompre§§ible) flow field U(X,t)
and the secondary flow field Ug(X,,?) produced by the
external sound excitation.

The secondary flow field Ug(X|,?) can be measured in
front of the membrane of a loudspeaker using hot-wire
anemometry. Here the mean velocity u; . depends on
the chosen frequencies and the corresponding amplitudes
F(t). The scaling of the control functions depends on the
transf;gr function of the loudspeaker signal_,’i.e., the factor
n of U(X,t) and the secondary flow field Ug(X,,?), where
u(t)=nuy (t) and u,(t) are the velocity fluctuations of
Ug(%,,1). A successful control can be achieved when the
flow field Ug(X,,t), governed by the appropriate frequen-
cy and amplitude, fits the physical conditions of the
preselected dynamics of the wake flow. It is obvious that
the effect of Ug(X,,?) on the wake flow is not focused on
one local point in space, but on a finite volume including
the space around the cylinder and the wake region.
Surprisingly, the predictions from the constructed model
[Eq. (2)] resulting from a measurement at one local point
in space (&,7) are in very good agreement with the exper-
imental investigations. This is due to the strong correla-
tion of the control parameters of a dynamical system
such as the velocity, pressure, etc. [38].

A physical interpretation of the successful control of
the vortex street is given as follows: The experiment
shows that Ug(X,,?) has a strong impact on the pressure
field around the cylinder, and therefore on the develop-
ment of the vortex street in the near wake. After the vor-
tices are developed, they move downstream through the
convectively unstable regions in which the influence of
Ugs(X,,t) of the global dynamics of the vortex street is
very small. This is consistent with physical intuition,
since it appears to be difficult to drive the fully developed
complex structure of the vortex street to a preselected
structure [10,37]. In conclusion, the good agreement be-
tween numerical and experimental results indicates that

there might exist a simple relation between the pressure
field around the cylinder and the flow field in the near
wake of the cylinder.

B. Modified experimental setup

Taking the above mentioned physical principles for the
control of the vortex street into account, an experimental
arrangement for the control should include several possi-
bilities for the experimentalist. First, a measurement of
the fluctuations of the considered variable x; is of impor-
tance, since the calculated control functions are deter-
mined by a low-dimensional model [Eq. (2)] which is con-
structed from the experimental data. Second, the control
function F(z) should be directly applied to the vortex
street without any modification. Finally, the control
should have an effect directly at the place of the develop-
ment of the vortex street dynamics, i.e., in the absolute
sensitive region behind the cylinder. The last argument
for the development of an experimental apparatus espe-
cially indicates that it is reasonable to shift close to the
cylinder the area of the data acquisition and the area of
application of the control.

The centerpiece of our arrangement is a cylindrical
pipe which replaces the natural cylinder. Figure 19
sketches the experimental bluff body arrangement. The
main idea for the bluff body is based on the possibility of
measuring and controlling the pressure fluctuation p (¢)
in the boundary layer of the cylinder. This can be done
using a distribution of equidistant pinholes in one plane
of the § axis at the cylindrical pipe. The number of
pinholes and their diameter depend on the inner diameter
of the cylindrical pipe and the aspect ratio //d, i.e., the
relation between the outer diameter of the pipe and the
length of the cylinder. To suppress a three-dimensional
vortex pattern along the { axis, such as oblique vortex
shedding with certain shedding angles, both ends of the
cylindrical pipe are equipped with specially designed end-

FIG. 19. Schematic presentation of the modified experimen-
tal setup. (1) Control apparatus. (2) Cylindrical pipe with n
pinholes. (3) Endplates with endcylinders. (4) Pinhole micro-
phone.
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plates and endcylinders [39]. To measure the internal
pressure fluctuations, a pinhole microphone is placed at
one end of the pipe. With the experimental arrangement
a control can be achieved by the use of an apparatus
placed on the other side of the cylindrical pipe, which
periodically or aperiodically inhales or exhales air in and
out of the pipe through the pinholes.

To illustrate the potential of the experimental setup,
some investigations are presented for a cylindrical pipe of
d =1.5 mm with two endplates and endcylinders and an
1 /d ratio of 120 between both endcylinders was mounted
in front of the nozzle exit. The circular pipe was
equipped with six pinholes of a diameter of 0.7 mm and a
mutual distance of 20 mm. Investigations with this bluff
body arrangement show that the global shedding axis is
parallel to the § axis of the cylindrical pipe from which
the pressure fluctuations p(z) can be accurately mea-
sured. From such measured time signals, a model similar
to the constructed model for the velocity fluctuations
[Eq. (2)}, i.e.,

p= _ > cijPiP'j, (24)

can be derived [38,40].

The coefficients c;; of the model reconstructed from the
pressure fluctuations of a vortex street at Re=100 and
the corresponding coefficients a;; of the model for the ve-
locity fluctuations are shown in Table I. It can be seen
that some of the coefficients have similar values. Fur-
thermore, it is found by a numerical integration that the
normalized limit cycle of the trajectory of the velocity
and the pressure fluctuations are in a good agreement
[41].

The essential physical properties of the wake flow
which enables the calculation of the optimal forcing func-
tion as well as accurate parameters for a stability analysis
can be determined easily from the reconstructed model
coefficients. It has been shown elsewhere [10,26] that a
very useful tool for the estimation of the quality of the
reconstructed model and the analysis of its model
coefficients is based on the following idea: For slowly
varying amplitudes and frequencies, the general oscillator
equation [Eq. (2)] can be approximated by the Landau

TABLE 1. Comparison of the reconstructed coefficients of
the velocity a;;(u) and pressure fluctuations c;;(p) for a vortex
street at Re = 100.

i J a,‘j( u) C,'j(p)

0 0 0.0000 0.0000
0 1 0.1493 0.2595
0 2 —0.0301 0.1443
0 3 —0.1367 —0.2316
1 0 —1.0000 —1.0000
1 1 0.4203 0.5175
1 2 0.0263 0.0264
2 0 —0.1444 —0.1421
2 1 —0.1873 —0.3432
3 0 —0.0691 —0.0719

equation
F=ar—pr3, o=—y—86r?,

where r is the amplitude and w:=4¢ is the angular fre-
quency. The corresponding Landau coefficients can be
calculated from

a=1ay, B=—1(ay +3ay),

(25)
y=13(1—ay), 8=—Hap+3ay).

The resulting Landau coefficients of Table I for both the
velocity u (¢) and pressure fluctuation p (¢) are shown in
Table II. The coefficient a is a measure for the instability
of the fixed point » =0, and 8> 0 defines the damping of
the oscillator at large amplitudes. Since the data have
been normalized, the angular frequency w, =1 and the
amplitude of the limit cycle rg‘—‘l, where rg=(a/B)l/ 2
and therefore a=p. The value of ¥ represents the angu-
lar frequency for small amplitudes, whereas & describes
the increase of the frequency for a corresponding increase
of the amplitude.

The Landau coefficient 8 calculated from the recon-
structed coefficients of the pressure fluctuations shows a
larger value compared to the velocity fluctuations. This
means a faster transition to the asymptotic solution,
whereas the deviation of the amplitude-frequency cou-
pling (8) for the pressure and the velocity is very small,
which characterizes an essential physical property for the
nonfeedback control or a nonlinear resonant stimulation.
These results indicate that it is possible to measure the
pressure fluctuation via our experimental arrangement
and, therefore, a very effective application of the non-
linear nonfeedback method can be expected.

VI. DISCUSSION

This section will discuss the physical insight of the
model-based control and its applicability to technical
wake flows, i.e., wakes at higher Reynolds numbers. The
nonlinear nonfeedback control strategy can be taken as a
generalization of the linear notion of driving the systems
by out of phase forcing. The physical interpretation of
the calculated driving force is that the forcing simply
cancels the undesirable dynamics and imposes the
preselected one. Even though the goal dynamics cannot
be chosen arbitrarily, several experiments have proven
that the range of specific behavior can be very wide (for
details, see Keefe [9]).

The dynamical properties of the entrainment of non-
linear systems to periodic motion at certain frequencies

TABLE II. Landau coefficients of Eq. (24) for the coefficients
of Table 1.

u(t) p(1)
a 0.0747 0.12975
B 0.0747 0.1298
v 1.0000 1.0000
) 0.0226 0.0237
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based on its nonlinearity or amplitude-frequency cou-
pling is well known. On the other hand, the nonlinear
control method indicates that the ability of a nonlinear
system to be entrained to a preselected motion is much
more general [1]. The crucial point here is that the
overall success of a model-based control of nonlinear sys-
tems, such as wake flows, can be attributed to how accu-
rate characteristic physical properties can be predicted
from the low-dimensional model reconstructed from the
experimental system. In this context arises the questions
of why the nonlinear model-based control strategy might
be advantageous for the bluff body wake control.

In earlier works concerning active control mechanism,
such as an oscillating cylinder, the limitation of the con-
trol of wake flows was discussed using ideas of linear sta-
bility theory. The suppression of the vortex street near
the onset of global instability by single sensor-single ac-
tuator feedback control in the wake of an oblong cylinder
was discovered by Berger [42,43] to be difficult, and only
possible very close to the natural critical Reynolds num-
ber, i.e., Re =<80. Furthermore, Monkewitz [44] has
shown that, to induce global instability, only a single and,
in most applications, unspecified global mode has to be
destabilized. The suppression of global instability implies
that all global modes have to be attenuated. In general
one cannot assume that a single sensor is sufficient to
handle multiple global modes, which often have very
closely spaced frequencies and occur at higher Reynolds
numbers, i.e., Re > 160. Therefore if the forcing func-
tions do not fit perfectly to the overall dynamical
behavior of the wake flow, the driving force controls one
mode but might destabilize other ones and thereby defeat
its purpose. Huerre and Monkewitz [45] speculated that
in all examples in which a simple 'single sensor-single ac-
tuator feedback control works, there was only a single,
self-excited global mode to control, with all other modes
strongly damped. This statement is in a good agreement
with the results of the nonlinear nonfeedback control
presented here.

In comparison with the traditional linear control
methods, the nonlinear forcing is advantageous, since the
dynamics of the vortex street is nonlinear and therefore
its energy transfer is more effective [46]. For Reynolds
numbers very close to the critical Reynolds numbers, i.e.,
45 <Re =80, the amplitude-frequency coupling is very
weak. Therefore, similar results for the control using
linear or nonlinear driving forces can be obtained [47].
For higher Reynolds numbers the coupling between the
natural amplitude and frequency is increased, leading to a
stronger nonlinearity of the calculated forcing functions
and a higher efficiency of the nonlinear wake control.
Furthermore, due to such an optimal forcing an increase
of the region of entrainment, i.e., the regions of a fre-
quency lock in, and the possibility of freezing a large
number of degrees of freedom in the transitional range
(160 <Re = 300) can be obtained [48].

From a stability point of view one of the main advan-
tages of the model-based control is that the growth rates
of the global mode is determined directly from the recon-
structed model equation. Therefore it contains a high de-
gree of physical insight into the global mode characteris-

tics [26], and the energy transfer to the global mode can
be assumed to be most efficient. Noise might also play
another important role for the stability and quality of
most control methods, since it reduces the overall
efficiency. Such small stochastic forces from outside the
dynamical system have a neglectible influence on the sta-
bility of the model-based control, because no feedback is
required. On the other hand, the quality of the control
can be sensitive to modeling errors in Eq. (2).

An interesting question in the field of mechanical en-
gineering is how such a control strategy can be technical-
ly applied to wake flows at high Reynolds numbers.
Since the model-based control relies on forecasting tech-
niques using low-dimensional models, the applicability to
technical wake flows might be limited to low-dimensional
dynamical states. It has been shown by Keefe [9] that the
model-based control generally seems to hold potential for
transitional flows, but might necessarily have forcing
functions requiring energies high compared to the natural
dynamics. The greatest problem of the application of a
model-based control to transitional or turbulent wakes or
other fluid mechanical systems is the complexity of their
underlying exact model equations. The synchronization,
the stabilization, or the suppression of such complex dy-
namics of the flow field governed by multiply unslaved
modes can only be achieved by a similarly complex forc-
ing function. An additional problem is connected with
the time dependence of the three-dimensional spatial
structure in the wake behind the bluff body. Further-
more the amplitude of the control force increases rapidly,
even when the control is restricted to a small domain
such as the absolute sensitive region behind a body [49],
or in case of a stabilization of a global mode in transition-
al wakes [48].

A field of interest in wake flow research is the drag
reduction of the body by suppressing its vortex shedding.
It is already known that the suppression of vortex shed-
ding is connected to the control of the absolute unstable
region in the near wake directly behind the bluff body
[45,49]. In such regions the introduced disturbances
spread upstream and downstream and contaminate the
entire parallel flow. Since wake flows behave like oscilla-
tors, the evolution of vortices does not rely on the spatial
amplification of external perturbations but rather on the
growth of initial disturbances in time.

With the model-based control, a total suppression of
the vortex street and a stabilization of the transitional or
turbulent wakes which, for example, lead to an improve-
ment of the signal-to-noise ratio and can be useful in the
field of data acquisition, are of particular interest. The
stabilization of the vortex street can be achieved by the
loudspeaker arrangement used here (see, for example,
[37)), but the efficiency of the control decreases with the
increase of Reynolds number, due to the increase of the
complexity of the wake flow [41]. For the effective
suppression of the vortex street by suction or blowing via
this type of control, some assumptions have to be intro-
duced. The basic idea is to calculate the lowest level of
suction or blowing needed for a total suppression of the
velocity fluctuation of the vortex street, i.e., to prevent
the development of vortex shedding. In the first step we
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assume that even though the wake at higher Reynolds
numbers is turbulent and the corresponding underlying
dynamics is high dimensional [37], the near wake is
governed by a single global mode, ie., by a low-
dimensional oscillator with only one characteristic eigen-
frequency. All other active modes will be neglected in
the later analysis. In the next step, the experimental data
are analyzed to extract the characteristic dynamical
behavior of the global mode, from which a low-
dimensional model equation can be reconstructed [50]. If
the global mode characteristics can be modeled with a
certain accuracy, then a forcing function similar to the
one presented in Fig. 16 can be calculated. Preliminary
investigation indicates that this simplified ansatz might
be very successful in estimating the appropriate suction
or blowing level. The advantage of this approach is that
the lowest level of suction or blowing necessary for the
suppression of vortex shedding can be easily calculated.
This is due to the fact that the forcing function is started
near resonance, with an appropriate amplitude at which a
large number of active modes will be damped out rapidly.
Then the dynamics of the vortex shedding will be en-
trained by the forcing function up to the dynamical state
of preventing the development of a vortex street. Note
that the assumption of the accurate approximating a
high-dimensional wake flow by a simple model with only
one global mode can only be applied for this type of
preselected dynamics. For other preselected dynamics
the initial trajectory, including the global and all other
additional modes, must be considered. A further advan-
tage of the model-based control is that, if the model
coefficients have a predictable dependence on the velocity
u, a long time suppression can be achieved by an adaptive
model-based control mechanism [24]. Here the response
of the experimental system is measured from time to time
in order to update the model coefficients.

For the exact physical interpretation of the wake flow
control a detailed knowledge of the connection between
regions of absolute instability and global flow response is
of great interest. Especially from an experimental point
of view there still exists only little evidence that the con-
trol of global modes must be applied in or near regions
where local linear theory predicts absolute instability
(see, for example, Refs. [45,51]). However, a complete
experimental confirmation of this interpretation of the
flow response to external driving forces and its compar-
ison to results of a local linear stability analysis is not
available. Here the difficulties are based mainly on the
complexity of an appropriate experimental setup and the
measurement of the interested physical properties of the
considered wake region. Furthermore, the accurate
determination of the corresponding model coefficients
needed for a mathematical analysis is still an open prob-
lem [41,52,53]. With the modeling ansatz discussed here,
a physical and mathematical analysis of the reconstructed
low-dimensional model [Eq. (2)] in connection with a
study of its coefficients a;; for varying control parameters
can be carried out, and may confirm the predictions of
the local linear theory [33,41]. In particular, the investi-
gation of the reconstructed model coefficients a;; with
dependence on control parameters such as the Reynolds

number and the location of observation (£,7) in the wake
of the body, has provided physical insight into the vortex
street dynamics. Therefore, the reconstruction of accu-
rate model parameters from experimental data of the vor-
tex street dynamics enables a much more detailed look
into its global flow characteristics and its nonlinear phe-
nomena [41,53].

VII. SUMMARY

In this work we have studied the possibility of a non-
linear resonant stimulation and a nonfeedback control of
the periodic cylinder wake. We have shown that with the
nonlinear resonant stimulation the width of the wake re-
gion can be increased or decreased. In addition, a long-
term decrease of the width of the wake region of approxi-
mately 15% can be achieved by a modification of the
standard nonlinear forcing functions. Neither a short-
nor long-term decrease of the width of the wake region is
possible with sinusoidal driving forces. Taking the physi-
cal aspects of the resonantly stimulated vortex street into
account, a very good qualitative agreement between the
experiment and numerical predictions from an extracted
low-dimensional model was found. In the case of the
nonfeedback control of the vortex street, a good qualita-
tive agreement between experiment and numerical simu-
lation was found for an increase of the width of the wake
region. Since the forcing functions resulting from the
nonfeedback control algorithm cannot be exactly
transferred by a loudspeaker arrangement, a decrease in
amplitude or a total suppression of the vortex street
could not be achieved. In general, with the loudspeaker
arrangement used in this work, the nonlinear control
works best when the preselected or goal dynamics rear-
ranges the energy of the uncontrolled flow into another
nonlinear form, instead of simply suppressing the vortex
street. Note that, in the case of the numerical simulation,
a decrease of the width of the wake region or a total
suppression of the vortex street in general seems possible,
but it requires a different control apparatus. Therefore,
an experimental control mechanism was proposed which
can translate the calculated forcing function to the exper-
imental system in order to achieve the preselected dy-
namics. In conclusion, the model-based control possesses
some interesting potential for the control of wake flows
behind bluff bodies, but further improvements of the gen-
eral method as well as the experimental implementation
are needed. Developments and investigations along these
lines are in progress.
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APPENDIX

An example for a set of physical and normalized
coefficients reconstructed from experimental data of a
vortex street at Re = 65 and 100 used for the numerical
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TABLE III. Physical and normalized coefficients of the
reconstructed model equation [Eq. (2)] of a vortex street at Re

TABLE IV. Physical and normalized coefficients of the
reconstructed model equation [Eq. (2)] of a vortex street at

= 65. The unit of the physical coefficients a;; ism !~ “Js'*% 2. Re=100.

a; Physical Normalized ay Physical Normalized
ag +319 604.094 328001 5 —0.0001 ay +716 633.580534967 6 —+0.0000
ay —3059.043 461 279 081 +0.0323 ag; —3225.430010905 253 +0.1493
ag —17.937410 898 698 39 +0.0476 ag, —0.577418745018 7894 —0.0310
ap —1.009903 326 994 349 3E —02 —0.0303 ap; —3.4693777222520132E —03 —0.1367
ao — 1046 168.439 787 224 —1.0825 ap —1505338.262 742434 —1.0000
ap +8831.244 519 847 463 +0.2117 a +5429.853 560900 833 +0.4204
a; +29.172 819 836 864 54 +0.2363 a +0.445 392 807 1939776 +0.0263
a +1147522.678 679479 +0.1769 a, +1314175.151 508 925 —0.1444
as —6287.034 585214 860 —0.1374 ay —2116.555265 886052 —0.1873
asg —462000.9213227787 —0.0272 as —521043.8614207370 —0.0691

simulation are presented in Tables III and IV, respective-
ly. The double precision format of the physical
coefficients is necessary for the numerical investigation,
because of the large differences between the various mag-
nitudes. .

In order to permit a mathematical analysis, the recon-

structed model equations [Eq. (2)] must be normalized so
that the attractor is close to a unit circle with the origin
as its center. The angular velocity on the circle should be
nearly unity. The corresponding coefficients are said to
be normalized. More details of the normalization process
can be taken from Ref. [26].
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